Problem 1. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/3.5.6.pg
Fill in the missing values to make the following matrix a stochastic matrix.
$\left[\begin{array}{ccc}\overline{0.93} & 0.86 & 0.46 \\ 0.07 & \overline{0.12} & 0.06\end{array}\right]$
Problem 2. (1 point) METUNCC/Applied_Math/markov/trans_matrix.pg

- If you get 0 pages of homework this week, then with probability 0.9 you get 4 pages of homework next week, and with probability 0.1 you get 25 pages of homework next week.
- If you get 4 pages of homework this week, then with probability 0.2 you get 0 pages of homework next week, and with probability 0.4 you get 25 pages of homework next week.
- If you get 25 pages of homework this week, then with probability 0.4 you get 0 pages of homework next week, and with probability 0.3 you get 25 pages of homework next week.

Write the transition matrix for this system using the state vector $v=\left[\begin{array}{c}0 \text { pages } \\ 4 \text { pages } \\ 25 \text { pages }\end{array}\right]$.
$\mathrm{T}=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$
Problem 3. (1 point) METUNCC/Applied_Math/markov/state_vect.pg
A Markov system with two states satisfies the following rule.

- If you are in state 1 then $\frac{2}{10}$ of the time you change to state 2 .
- If you are in state 2 then $\frac{4}{10}$ of the time you remain in state 2 .

At time $t=0$, there are 100 people in state 2 and no people in the other state.
Write the transition matrix for this system using the state vector $v=\left[\begin{array}{ll}\text { state } & 1 \\ \text { state } 2\end{array}\right]$.

$$
\mathrm{T}=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]
$$

Write the state vector for time $t=0$.

$$
\mathbf{v}_{0}=\left[\begin{array}{l}
- \\
-
\end{array}\right.
$$

Compute the state vectors for time $t=1$ and $t=2$.
$\mathbf{v}_{1}=\left[\begin{array}{l}\square \\ \mathbf{v}_{2}\end{array}=\left[\begin{array}{l}\square \\ \square\end{array}\right]\right.$

Problem 4. (1 point) METUNCC/Applied_Math/markov/stable_prob.pg
A Markov system with two states satisfies the following rule.

- If you are in state 1 then $\frac{8}{10}$ of the time you remain in state 1 .
- If you are in state 2 then $\frac{6}{10}$ of the time you remain in state 2 .

Write the transition matrix for this system using the state vector $v=\left[\begin{array}{l}\text { state } 1 \\ \text { state } 2\end{array}\right]$.

$$
\mathrm{T}=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]
$$

Find the long term probability (stable state vector).
$\mathbf{v}_{s}=\left[\begin{array}{l}- \\ -\end{array}\right.$
Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

